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5. Concluding remarks 

The systematic application of  integral-equation 
theory has permitted straight-forward derivations of  
analytical expressions for the field generated by two 
coupled waves. Furthermore,  the method has the 
advantage of  being easily accessible to a physical 
interpretation. When an X-ray wave is transmitted 
over a small distance inside a crystal the probabili ty 
for a single scattering event is much higher than the 
probabili ty for double scattering, triple scattering and 
so on. The basis for the utility of the numerical method 
(40) is therefore that the successive layers in the crystal 
are chosen so close together that the probabil i ty for 
multiple reflection can be neglected. Since being over 
Sh and So, however, the two integrals must be propor- 
tional to the probabili ty for scattering and re-scat- 
tering, respectively. This must mean that a general 
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Fig. 6. The intensity of the transmitted wave as calculated from 
the numerical solution (40) of two coupled integral equations 
for the field. Fanning planes, not shown, converge above the 
crystal with R = 20 m. The arrows point in the direction of the 
incoming plane wave. (See text).) 

term of  nth order in any of  the analytical iteration 
procedures has to be identical with the contribution 
from waves that are scattered and re-scattered n times. 
So far, the influence of  average absorption, asym- 
metrical reflections, and coupling of  three or more 
waves has been neglected. In many circumstances, 
for instance spectrometry, these factors are either 
trivial or unimportant .  Complicated phenomena such 
as, for instance, diffraction focusing require that 
effects due to crystal shape and refraction are con- 
sidered for the various classes of incoming wave 
packets. 
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Abstract 

In close-packed ordered alloys of  composit ion A B ,  
the lattice constant a and all interatomic distances 
are determined to a good approximation by the quan- 
tity (RA + nRa). This observation, the Paul ing-Simon 
law [Pauling (1957). Acta Cryst. 10, 374-375; Simon 

0108-7673/84/030291-06501.50 

(1983). Angew. Chem. 22, 95-113], is analogous to 
Vegard's law [Pearson (1972). The Chemistry and 
Physics o f  Metals and Alloys. New York: Wiley] for 
random alloys. No exact proof  is possible but here a 
theoretical discussion is given using the spirit of  
Froyen & Herring's 'proof '  of  Vegard's law [Froyen 
& Herring (1981). J. Appl. Phys. 52, 7165-7167]. The 
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effect of a change in radius ratio can be discussed 
precisely with the virial Y,i FiD~ either in terms of the 
exact crystal structure surrounding each type of atom 
or by approximating it as a close-packed medium 
treated as a uniform isotropic continuum. The essen- 
tial point is that the A and B sites have to be elastically 
equivalent in the sense that a radius change 6R on 
either site has to produce the same overall volume 
change. From this it is found that the interatomic 
force constant is proportional to D - " ,  where D is 
the spacing between atoms and m lies between 3 and 
4, more or less consistent with Badger's law [Badger 
(1934). J. Chem. Phys. 2, 128-131]. 

1. Significance of  the Paul ing-Simon law 

It is well known that the lattice constants a and 
interatomic distances D in solids are given by adding 
up appropriately defined atomic radii (Pauling, 1957; 
Simon, 1983). For solid-solution alloys Al-cBc of 
concentration c, one has the well-known Vegard's 
distance law (Pearson, 1972) that a and hence the 
average D depends only on the average 

Ray = (1 - c ) R  A + cRB, ( l . l )  

where R A  and RB are the atomic radii. This is not 
the place to discuss precisely how accurately it is or 
is not obeyed in particular systems. Suffice it to note 
that it is a sufficiently good or interesting approxima- 
tion for the law to be universally known. 

Froyen & Herring (1981) have discussed under what 
approximation, for what model of atoms and their 
forces, Vegard's law can be proved to be true. Their 
approach is to replace all atoms by average atoms 
with radius R~ giving a lattice constant 

a = CRav, (1.2) 

where C is a constant, and to consider the response 
of the system to changing any one atom from radius 
Ra~ to either RA or RB, i.e. introducing an appropriate 
8R. Since in solid solution all sites are equivalent, 
the 6a resulting from a 6R on any site is the same, i.e. 

6 a = ( C / N ) 6 R ,  (1.3) 

where N is the number of sites. To go from the system 
of average atoms to the real system, we have to 
introduce a change 

t~R (A)=  R A -- Ray (1.4) 

on N ( 1 -  c) sites and a change 

8R (B)= RB - Ray (1.5) 

on Nc sites. As we are considering a linear response 
to the changes 6R the total change in lattice constant 
is given by 

6a = C[(1 - c ) ~ R  (A) + c6RCa)]. (1.6) 

This is zero by the definition of Ray. Hence, changing 

from the system of average atoms to the real system 
produces no change in the lattice constant and so a 
for the real system is given by (1.2) in terms of 
the weighted average Ray. This is Vegard's law. The 
crucial point is that a 8R on any site produces the 
same 8a because all the sites are equivalent in 
the simple solid-solution case. This is evident from 
(1.6) in that the same constant C applies to both parts 
of the equation. 

For the case of stoichiometric ordered alloys AB,  
the Pauling-Simon result also holds in spite of the 
fact that the A and B atoms occupy quite different 
sites in general. The lattice constant is again deter- 
mined by a weighted average radius (Simon, 1983) 
so that 

C 
a = (RA + nRB). (1.7) 

n + l  

We restrict our discussion to the case where all atoms 
are on special sites so that all interatomic distances 
are determined by a single lattice constant a. We 
consider the cubic Laves phase (MgCu2) and the CaF2 
structures, and orderings on a basic b.c.c, or f.c.c. 
lattice, e.g. CsC1, NaTl, NaC1 and A u C u 3  structures. 
Indeed, for the latter compounds the Froyen-Herring 
argument applies directly as all sites in the b.c.c, and 
f.c.c, structures are equivalent, which proves the 
Pauling-Simon result in those cases. This is not true 
for the CaF2 structure or the Laves phase where we 
are dealing with geometrically inequivalent sites. In 
the cubic Laves phase, for example, one site has 12 
neighbours while the other has 16. However, it is clear 
from the argument leading from (1.2) to (1.6) that the 
Pauling-Simon result will still follow if the sites are 
in some sense elastically equivalent. 

We can rephrase the argument (1.2) to (1.6) for the 
stoichiometric AB,  case by starting with an ideal 
system which now consists of atoms with some radius 
ratio RA/RB, which is ideal for the particular struc- 
ture. We again consider the change in lattice constant 
due to a change 8RA on a single A site or 6RB on 
one B site: 

8 a = C A S R A / N ( n + I )  or 6 a = C B 6 R B / N ( n + I ) .  

(1 .8)  

This is for a specimen containing N formula units of 
AB,, so that there are N(n  + 1) atoms altogether. If 
we make a change 6RA on all N atomic A sites and 
a change 8RB on all Nn B sites linearity implies that 
we obtain a change in lattice constant of 

1 
6a = (CAt~RA + nCBSRB). (1.9) 

n + l  

This equation can be integrated to yield 

1 
a =  (CARA + nCBRB), (1.10) 

n + l  
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where there is no extra constant term because a must 
shrink to zero if we shrink RA and RB uniformly to 
zero in the ideal ratio. Clearly if 

C A = C B = C  (1.1l) 

then (1.10) becomes the Pauling-Simon law (1.7). 
Equation (1.1 l) is what we mean by saying that the 
A and B sites are 'elastically equivalent'. We see that 
this condition suffices to give the Pauling-Simon 
result, and our analysis in §§ 2 and 3 will focus on it 
and on the type of force law required to satisfy it. 

In order to bring out the significance of the Pauling- 
Simon result it is useful to consider Pearson near- 
neighbour diagrams (Pearson, 1972) which we will 
use to illustrate three points. Such a diagram is a plot 
of the structural strain parameter S versus radius ratio, 
where 

S=(2RA--  DAA)/2RB (1.12) 

is the difference between the actual interatomic dist- 
ance DAA and the distance 2RA for a simple strain-free 
AA contact. Clearly the horizontal line S = 0 in Fig. 
1 is the line for strain-free AA contacts, the area below 
the line corresponds to a compressed contact and that 
above to a loose contact. The two lines representing 
strain-free AB and BB contacts are also plotted: they 
follow from simple geometry. In general, the positions 
of such lines depend on structural variables such as 
c/a or internal position parameters, but we have 
chosen the cubic Laves phases for analysis because 
there are no free parameters and the strain-free lines 
are uniquely determined. 

For the sake of definiteness we will discuss the 
cubic Laves phase (MgCu2) but phrase our arguments 
quite generally. Although the Laves structure is 
usually described as close packed, there is no ratio 
RA/RB for which hard spheres can maintain all three 
contacts AA, AB and BB exactly. For absolutely 
incompressible spheres we would expect that the 
observed strain parameters for different alloys would 
follow the kinked line 0 VXY in Fig. 1 with different 
contacts dominating the structure as the radius ratio 
changes. In the absence of a unique radius ratio 
satisfying all three contacts, we will define an ideal 
ratio ( R A / R B ) i d e a  I corresponding to the centroid of 
the triangle VWX in Fig. l, or for simplicity what is 
nearly the s a m e  (RA/RB) idea l  = ( 3 / 2 )  1/2 = 1.225 corres- 
ponding to the point W. Alloys with radius ratio near 
this ideal value are observed to have strain parameters 
which lie roughly in the middle of the triangle VWX 
along the dashed line in Fig. 1. This means that the 
AB contacts are somewhat compressed while the AA 
and BB contacts are slightly expanded. From this we 
reach our first conclusion that the atoms are acting 
not quite as hard balls but as hardish, slightly deform- 
able spheres where compression of one contact is 
being compensated by an expansion of another. 

We next consider in more detail the argument 
leading to (1.10). On the assumption that the Laves 
alloys follow some systematic law, we suppose that 
the strain parameter S is some function of RA/RB 
represented by some curve in the Pearson diagram. 
For small deviations from the ideal radius ratio, such 
a curve can always be approximated by its tangent 
at the ideal ratio, i.e. by the line 

S = a [ ( g A / R B ) - - ( R A / R B ) i d e a l ] + f l ,  (1.13) 

where a, fl are constants. As the atoms are all on 
special sites we can express the interatomic distances 
DAA, DBB and DAB as functions of the lattice constant, 
i.e. 

DAA = fAAa, DAB = fABa, DBB = fBBa, 
(1.14) 

where fAA, fAB and fBB are geometrical constants. 
Using this in the definition of the strain parameter  
(1.12) and combining with the approximate straight 
line expression (1.13) we can express the lattice con- 
stant for RA/RB near the ideal ratio as 

a = I~(RA + yRB) (1.15) 

where /~ and y are constants easily expressible in 
terms of a,/3 and (RA/RB)ideal. NOW experiment 
shows that all known alloys cluster quite well around 
a straight line (1.13) (Pearson, 1972; Simon, 1983), 
even for moderately large deviations of radius ratio 
from the ideal. This establishes that there is indeed 
an additivity of radii in the sense of (1.15), which is 
our second conclusion. 

Equation (1.15) is clearly the same as (1.10), and 
the two independent  constants /~, y can be thought 
of as corresponding to two items of information. The 
first item is the fact that, for R A / R B  equal to the ideal 
value, S in (1.13) is observed to have a value in the 
middle of the triangle VWX as already discussed. 

v BB 

0"15 Y/ lAB 

0-1o 

0-05 

0 V /  ," W/ AA 
/ 1 . 09  " /1225 135 A,/R  

/ 
/ 

Fig. l. Pearson near-neighbour diagram showing the strain para- 
meter S = (2RA-  DAA)/2RB for the cubic Laves phase (AB, = 
MgCu2). The lines indicate strain-free contacts for the AA, AB, 
BB pairs of atoms, respectively. The experimental points for all 
alloys cluster around the dashed line (Simon, 1983; Pearson, 
1972). 
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The second item of information is the slope of the 
dashed line representing data for non-ideal ratios 
(Figs. 1 and 2) and this is intimately connected with 
the Pauling-Simon law. 

Comparison of (1.15) with (1.17) shows that the 
Pauling-Simon result requires 3' = n. A little algebra 
from (1.12), (1.14) and (1.15) shows that the line (1.13) 
goes through the point 

S = - 3' for R A / R B  = -- 3' (1.16) 

as noted by Simon (1983), i.e. it cuts the 45 ° line 
S = R A / R 8  at the point ( -  3', - 3'). This is not of course 
a physical point, but it serves conveniently to define 
the slope of the line (1.13) of observed points in the 
Pearson diagram (Fig. 2). Simon has shown that the 
observed line is given remarkably well by the value 
3' = n. The data points, however, are all in the vicinity 
of the triangle VWX and it is clear from Fig. 2 that 
a small change in the slope of the dashed line through 
the points results in a large change in the value of 3'. 
For the cubic Laves phase using Simon's data points 
we would estimate that 3' could take values between 
2 and 2-5. Our third point is therefore that the value 
3" = n represents the observed data about as well as 
any other value. This is a graphical statement of the 
Pauling-Simon law and indeed is the form in which 
it was first noticed (Simon, private communication) 
and it applies to other cases besides the Laves phases 
(Simon, 1983). 

This concludes the three deductions which we draw 
from the observed data and the Pearson near-neigh- 
bour diagram. To recap: (1) the observed data lies on 
a straight line implying that the lattice constant obeys 
an additivity of radii law; (2) the line passes through 
the centre of the triangle VWX which suggests that 
the atoms are acting as hardish yet deformable 
spheres; and (3) the slope of the line leads to the 
Pauling-Simon result. 
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(_~,, _ ~ J /  -2 
P 

/ 
/ 

X /  
, V_,~ 
1/-W R,/RB 

Fig. 2. Near-neighbour diagram for the cubic Laves phase on a 
smaller scale than in Fig. 1 showing the dashed line representing 
the real data points and its intersection with the 45 ° line OP. 

2. Microscopic analysis of structures 

We now consider the question of the type of force 
law that must exist between the atoms in order that 
the Pauling-Simon law is true. We assume a purely 
harmonic interaction with the potentials between the 
different pairs of atoms A and B given by 

U A A ( D A A )  = A A A ( D A A  -- 2 R A )  j/2 

UAB(DAB) = A A ~ ( D A B -  RA--  RB) '/2 (2.1) 

UBB( DB~) = An~(DBB - 2Ra)  1/2 

This will give a strain parameter in the near-neighbour 
triangle VWX (Fig. l) with tight and loose contacts 
compensating each other. The equilibrium lattice 
spacing can be determined by minimizing the total 
energy. By writing the interatomic distances D in 
terms of the geometrical factors as in (l.14) and with 
a lattice constant of the form (1.15) we find that the 
value of 3' in the equilibrium configuration is given by 

nNBBABBfBB + NABAAnfAB 

3" "-- N A A I ~ A A f A A  "3 I- NAB}LABfAB , (2 .2)  

where NAA, NAB, NB8 are the numbers of near neigh- 
bours of each type A A ,  A B  and BB (Table 1). We 
consider force constants A which depend on the 
atomic sizes, i.e. on the interatomic spacings: 

I~AA = A o ( D A A )  - m =  hO(fAAa) -m 

AAB = Ao(DAB) -m = AO(fABa) -m (2.3) 

;t BB = 'Xo( DB~ ) - "  = ,~o( f B~a )-  " 

where A0 is some constant. It is natural that large 
atoms consist of less tightly bound electron shells and 
hence are softer. This is recognized in (2.3) by having 
m > 0 while m = 0 would make all force constants the 
same. There is no unique or natural argument about 
what rn should be, and we will treat it as an adjustable 
parameter to see what value of m is consistent with 
the Pauling-Simon law, i.e. 3" = n in (2.2). In § 4 we 
return to what is known about interatomic forces, in 
particular Badger's rule, to compare with the value 
of m so found. 

We can now apply this procedure to the cubic Laves 
phases (MgCu2 structure) and the CaF2 structure. We 
substitute (2.3) into (2.2) for different values of the 
exponent m and calculate 3' (Table 2). The values of 
m which satisfy the Pauling-Simon law (3' = n) are 
3.8 and 3.9 for the CaF2 and MgCu2 structures, 
respectively. For the compounds which are orderings 
on a simple f.c.c, or b.c.c, lattice where all sites are 
equivalent, it is easy to sho'w from (2.2) that the 
Pauling-Simon law is true for all exponents m. It is 
worth mentioning at this point that the calculation is 
very dependent on which neighbours are included. 
The Laves phase and CaF2 structures were chosen 
because the near neighbours are well defined. For 
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Table 1. The geometrical factors f (1.14) and number 
of nearest neighbours N (in brackets) used for the 

calculation of 7(2.2) 

AB. faA fan fan 
MgCu 2 x/3/4 (4) 42/4 (6) x/l !/8 (12) 
CaF 2 - -  I/2 (6) 43/4 (8) 

Table 2. Values of y for the cubic Laves phase (MgCu2) 
and CaF2 structures (2.2) for different values of the 

exponent m 

m MgCu2 CaF2 

0 1-37 2.73 
l 1.50 2.50 
2 1.65 2.30 
3 1.82 2.13 
4 2.02 1.97 
5 2.26 1.84 

CaF2, for example, we did not include the Ca-Ca  
neighbours [i.e. NAA-  0 in (2.2)] as this interatomic 
distance is 40% greater than the F -F  distance. For 
structures such as SiCrs the cut-off point is less 
obvious. 

Alternatively, we can discuss the forces between 
atoms by considering the change in lattice constant 
caused by a change in the radius of some central 
atom. For the case of a linear response to the change 
in radius we have (Temkin, 1969) 

a ~ F~D,, (2.4) 
8a - 9 K-------~ 

where K is the bulk modulus, NO the total volume 
of the sample, F~ is the force at D~ due to a change 
in the radius of some central atom, and D~ is measured 
from the centre of the expanded atom to the centre 
of the neighbouring atoms i. This expression will serve 
to determine the desired constants CA, Ca in (1.8) to 
(1.11). We now insert into (2.4) the forces from (2.1) 
and distances (1.14). For the expansion of a site-a 
atom by 8RA we therefore have a change in the lattice 
constant 

8a = CASRA/ N(n + 1) (2.5) 

as in (1.8), but we now have an expression for CA: 

CA_.(n -b I____~) (NAAfAAAA A d- NABfABAAB ). ( 2 . 6 )  
9KO 

A similar expression holds for the B sites. By noting 
that nNBA = NAB w e  have 

nCB ( n + l )  = 9K-------ff(nNBnfB~)tsB + NABfABAAB ). (2.7) 

For the Pauling-Simon result to be true we require 
CA = CB (1.1 l). Equating CA and CB in (2.6) and (2.7) 
leads to the same expression as (2.2) with 3' = n. 

Both approaches to the question of what force law 
operates between the atoms, i.e. minimizing the 
energy (2.1) and the use of the virial (2.4), give the 
same result. For CaF2 and the cubic Laves phase 
the force constant must depend inversely on distance 
with an exponent m-~ 3.8 if the Pauling-Simon law 
is to be satisfied. We now consider a continuum 
approximation to try to understand why this should 
be so. 

3. Continuum approximation for close packing 

We will now repeat the procedure of the last half  of 
§ 2 but treating the surrounding medium as a uniform 
isotropic continuum instead of atomistically. We had 
the picture of some radius increase 8RA o r  8RB on 
an atomic site pushing out the surrounding atoms 
and resulting in an overall change in lattice constant 
determined by the virial (2.4). We fitted the value of 
m = 3.8-3.9 in our force law (2.1) (2.3), by considering 
two specific structures and their detailed interatomic 
distances. However, all these alloys are close-packed 
structures in the Frank-Kasper  (1958) sense, which 
means that any central increase in radius must be 
transmitted outward because there is no free space 
in the structure for the atoms to go to, much like in 
a continuous elastic medium. We still treat the central 
radius increase 6R as associated with a change on 
one atom, but replace all the surroundings by a con- 
tinuum. We consider whether this analogy with a 
continuous medium has anything to do with the A 
and B sites being elastically equivalent in the sense 
o f§  1. 

We apply the virial result (2.4) to our continuum 
model. We have to specify the forces F~ in (2.4) and 
the distances Di at which they are applied and this 
can be done in two ways. Firstly, we may suppose 
that the continuum starts at RA (for an A site), or 
some factor p times RA which fixes Di. We also 
suppose that the number of near neighbours to which 
the forces are applied is proportional to the area 
4zr(pRA) 2 of the sphere surrounding the sites: clearly 
a big atom has space for more neighbours as found 
in the Frank-Kasper  phases. ~¢e again apply a force 
constant dependent on atomic size: 

)t oc(pR)-" (3.1) 

and therefore write for the virial 

~,i FiD~ = (constant) 47r(pRA)2(pRA)-"(pRA)SRA 

= (constant) RaA -' '  8RA (3.2) 

and a corresponding expression for the B site. Clearly, 
from (1.8) and (2.4), for the two sites to be elastically 
equivalent [(1.11)] as required for the Pauling-Simon 
result, we require m = 3 in (3.2). 

An alternative way of applying the continuum 
model would be to say that all the near neighbours 
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of  the type A and B atoms are not at ident ical ly  equal  
distances but  are spread uniformly,  e.g., for the A 
sites, RA taking values between p~ RA and p2RA, and 
s imilar ly  a round the B sites. Again, with the same 
force law our virial for the expansion of  an A site 
becomes 

P2~A 
~ FiDi = constant  4 . n ' D 2 D - " D  d D  
i p! R A 

Pl~A 
= constant  4"n'D 3-m dD.  (3.3) 

Pl RA 

For this to be the same for the A and B sites we need 
m = 4, in which case (3.3) becomes 

F~D, = (constant) 417- In (P2/P~). (3.4) 
i 

We conclude therefore for this con t inuum analysis  
that we expect a value of  m in the range 3 to 4 for 
consistency with the Pau l ing-S imon law. 

4. Implications for the interatomic force law 

We have seen in §§ 2 and 3 that the Pau l ing-S imon  
law cannot  be 'proved '  in some logical sense for the 
Laves phase  and CaF2 structures, unlike the si tuation 
for the CsC1, NaCl,  NaT1 and AuCu3 structures which 
represent orderings on a set of  identical  sites. We 
have assumed ha rmonic  interatomic forces with force 
constants /~AA, t~AB, /~BB which depend  on the atomic 
sizes and  spacings according to 

h o z D  -m. (4.1) 

To satisfy the Pau l ing -S imon  law we required m = 3.8 
and m = 3.9 in the atomistic calculat ions of  § 2 for 
the two specific structures considered there, whereas 
our con t inuum approach  of  § 3 suggested m = 3 or 
m = 4  depend ing  on how we appl ied  it. The con- 
clusion is that m must  in general lie in the range 3 
to 4. 

What  value of  m might  be expected? At first sight 
it might  be thought  that it is impossible  to make 
general  statements beyond the quali tat ive one that 

large atoms might  be expected to be softer, i.e. m > O. 
However,  our attention has been drawn to Badger 's  
rule, which effectively says m = 3, deduced empiri-  
cally from the study of  interatomic force constants 
in molecules  (Badger, 1934). In this context we also 
refer to a theoretical discussion of  Badger 's  rule by 
Harris (1983). It is not possible to transfer  either the 
empir ical  or the theoretical  result b l indly  to the situ- 
ation in a close-packed metal,  but Badger 's  rule does 
indicate that our value of  m in the range 3 to 4 is 
indeed consistent with known systematic trends in 
in tera tomic force constants. In view of  the insensitiv- 
ity of  the slope of the observed line in Figs. I and 2 
to the exact value of  3' in § 1, the difference between 
m = 3 and m = 4 does not make a large difference in 
fitting the data (Table 2). 

We point  out again that the force constant  we are 
discussing relates to the near-neighbour  atoms in 
contact and not to any indirect long-range effects. In 
metals it certainly includes electron gas contr ibut ions 
which strictly cannot  be model led  as pair-wise forces. 
What  we are discussing is how the strength of the 
force constant  between near neighbours  depends  on 
the sizes of  the atoms concerned. 

We conclude therefore that there can be no general  
theoretical discussion of  the Pau l ing-S imon  law 
without some assumpt ion  about the interatomic force 
constants between different pairs of  atoms. However, 
what is known of the systematic variat ion of  force 
constants is such as to give the Pau l ing-S imon  result 
or a very good approximat ion  to it. 
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